Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250.588
Filtrar
1.
J Immunol ; 212(8): 1269-1275, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560811

RESUMO

Although the lungs were once considered a sterile environment, advances in sequencing technology have revealed dynamic, low-biomass communities in the respiratory tract, even in health. Key features of these communities-composition, diversity, and burden-are consistently altered in lung disease, associate with host physiology and immunity, and can predict clinical outcomes. Although initial studies of the lung microbiome were descriptive, recent studies have leveraged advances in technology to identify metabolically active microbes and potential associations with their immunomodulatory by-products and lung disease. In this brief review, we discuss novel insights in airway disease and parenchymal lung disease, exploring host-microbiome interactions in disease pathogenesis. We also discuss complex interactions between gut and oropharyngeal microbiota and lung immunobiology. Our advancing knowledge of the lung microbiome will provide disease targets in acute and chronic lung disease and may facilitate the development of new therapeutic strategies.


Assuntos
Pneumopatias , Microbiota , Humanos , Pulmão
2.
3.
J Immunotoxicol ; 21(1): 2332172, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38563602

RESUMO

Efficacious therapeutic options capable of resolving inflammatory lung disease associated with environmental and occupational exposures are lacking. This study sought to determine the preclinical therapeutic potential of lung-delivered recombinant interleukin (IL)-10 therapy following acute organic dust exposure in mice. Here, C57BL/6J mice were intratracheally instilled with swine confinement organic dust extract (ODE) (12.5%, 25%, 50% concentrations) with IL-10 (1 µg) treatment or vehicle control intratracheally-administered three times: 5 hr post-exposure and then daily for 2 days. The results showed that IL-10 treatment reduced ODE (25%)-induced weight loss by 66% and 46% at Day 1 and Day 2 post-exposure, respectively. IL-10 treatment reduced ODE (25%, 50%)-induced lung levels of TNFα (-76%, -83% [reduction], respectively), neutrophil chemoattractant CXCL1 (-51%, -60%), and lavage fluid IL-6 (-84%, -89%). IL-10 treatment reduced ODE (25%, 50%)-induced lung neutrophils (-49%, -70%) and recruited CD11cintCD11b+ monocyte-macrophages (-49%, -70%). IL-10 therapy reduced ODE-associated expression of antigen presentation (MHC Class II, CD80, CD86) and inflammatory (Ly6C) markers and increased anti-inflammatory CD206 expression on CD11cintCD11b+ cells. ODE (12.5%, 25%)-induced lung pathology was also reduced with IL-10 therapy. In conclusion, the studies here showed that short-term, lung-delivered IL-10 treatment induced a beneficial response in reducing inflammatory consequences (that were also associated with striking reduction in recruited monocyte-macrophages) following acute complex organic dust exposure.


Assuntos
Pneumopatias , Pneumonia , Animais , Camundongos , Suínos , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Pulmão/patologia , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , Poeira
4.
Zhonghua Bing Li Xue Za Zhi ; 53(4): 364-369, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38556820

RESUMO

Objective: To investigate the clinicopathological features of Erdheim-Chester disease (ECD) initially diagnosed at extraskeletal locations. Methods: Clinical and pathological data of four cases of ECD diagnosed initially in extraskeletal locations were collected at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from January 2013 to June 2023. BRAF V600E gene was detected by reverse transcription polymerase chain reaction (RT-PCR). Pertinent literatures were reviewed. Results: Four ECD patients included two males and two females ranging in ages from 2 years 11 months to 69 years. The lesions located in the lung (two cases), central nervous system (one case), and the testicle (one case) were collected in the study. One patient had occasional fever at night, one had nausea and vomiting, and two were asymptomatic. Radiologically, the two pulmonary ECD showed diffuse ground-glass nodules in both lungs, and the lesions in central nervous system and testicle both showed solid masses. Microscopically, there were infiltration of foamy histiocyte-like cells and multinucleated giant cells in a fibrotic background, accompanied by varying amounts of lymphocytes and plasma cells. The infiltration of tumor cells in pulmonary ECD was mainly seen in the subpleural area, interlobular septa, and perivascular and peribronchiolar areas. The fibrosis was more pronounced in the pleura and interlobular septa, and less pronounced in the alveolar septa. Immunohistochemical staining showed that all tumor cells expressed CD68, CD163 and Fô€ƒ¼a; one case showed S-100 expression; three cases were positive for BRAF V600E; all were negative for CD1α and Langerin. RT-PCR in all four cases showed BRAF V600E gene mutation. Conclusions: Extraskeletal ECD is often rare and occult, and could be easily misdiagnosed, requiring biopsy confirmation. The radiologic findings of pulmonary ECD is significantly different from other types of ECD, and the histopathological features of pronounced infiltration in the subpleura area, interlobular septa, perivascular and peribronchiolar areas can be helpful in the differential diagnosis from other pulmonary diseases. Detection of BRAF V600E gene mutation by RT-PCR and its expression by immunohistochemical staining are also helpful in the diagnosis.


Assuntos
Doença de Erdheim-Chester , Masculino , Feminino , Humanos , Doença de Erdheim-Chester/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Pulmão/patologia , Histiócitos/patologia , Sistema Nervoso Central/patologia , Mutação
5.
J Med Virol ; 96(4): e29579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572923

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , RNA Viral , Pulmão , Organoides , Receptor de Asialoglicoproteína
6.
Front Immunol ; 15: 1330373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596679

RESUMO

Introduction: Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods: To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results: I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion: These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.


Assuntos
Indóis , Monócitos , Síndrome do Desconforto Respiratório , Camundongos , Animais , Monócitos/metabolismo , Lipopolissacarídeos/farmacologia , Neutrófilos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo
7.
Acta Oncol ; 63: 146-153, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591350

RESUMO

BACKGROUND: In the Nordic countries, universal healthcare access has been effective in reducing socioeconomic disparities in non-small-cell lung cancer (NSCLC) management. However, other factors, such as proximity to healthcare facilities, may still affect access to care. This study aimed at investigating the influence of residential area on NSCLC survival. METHODS: This population-based study utilized hospital records to identify NSCLC patients who underwent their initial treatment at Vaasa Central Hospital between January 1, 2016, and December 31, 2020. Patients were categorized based on their postal codes into urban areas (≤50 km from the hospital) and rural areas (>50 km from the hospital). Survival rates between these two groups were compared using Cox regression analysis. RESULTS: A total of 321 patients were included in the study. Patients residing in rural areas (n = 104) exhibited poorer 12-month survival rates compared to their urban counterparts (n = 217) (unadjusted Hazard Ratio [HR]: 1.38; 95% Confidence Interval [CI]: 1.01-1.89; p = 0.042). After adjusting for factors such as performance status, frailty, and stage at diagnosis in a multivariate Cox regression model, the adjusted HR increased to 1.47 (95% CI: 1.07-2.01; p = 0.017) for patients living in rural areas compared to those in urban areas. INTERPRETATION: The study findings indicate that the distance to the hospital is associated with increased lung cancer mortality. This suggests that geographical proximity may play a crucial role in the disparities observed in NSCLC survival rates. Addressing these disparities should involve strategies aimed at improving healthcare accessibility, particularly for patients residing in rural areas, to enhance NSCLC outcomes and reduce mortality.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Pulmão , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Disparidades em Assistência à Saúde
8.
Arkh Patol ; 86(2): 37-41, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591905

RESUMO

Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion is an extremely rare tumor. Its clinical manifestation is unspecific and only molecular genetic method can proof this diagnosis. This paper describes an unusual clinical presentation of primary pulmonary myxoid sarcoma in a 68-year-old patient with involvement of both lungs.


Assuntos
Neoplasias Pulmonares , Sarcoma , Humanos , Idoso , Sarcoma/genética , Sarcoma/diagnóstico , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína EWS de Ligação a RNA/genética
9.
Arkh Patol ; 86(2): 58-64, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38591908

RESUMO

Problems with breathing and lung function are caused by the development of various lung diseases associated with lifestyle, harmful environmental factors and genetic predisposition. Knowledge of the molecular mechanisms of the development of the pathological process will allow on time identification of the disease or the development of targeted therapy. The article provides an overview of modern methods that make it possible to most accurately reproduce the structural, functional and mechanical properties of the lung (organ-on-a-chip), to perform non-invasive molecular studies of biomarkers of bronchopulmonary pathology using saliva diagnostics, as well as using DNA and RNA aptamers, verify tumor markers in biological samples of human tissue. Analysis of alterations in the pattern of protein glycosylation using glycodiagnostic methods makes it possible to detect lung cancer in the early stages.


Assuntos
Neoplasias Pulmonares , Pulmão , Humanos , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais
10.
Front Immunol ; 15: 1332933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576624

RESUMO

Introduction: Worldwide, breast cancer is the most important cancer in incidence and prevalence in women. Different risk factors interact to increase the probability of developing it. Biological agents such as helminth parasites, particularly their excretory/secretory antigens, may play a significant role in tumor development. Helminths and their antigens have been recognized as inducers or promoters of cancer due to their ability to regulate the host's immune response. Previously in our laboratory, we demonstrated that chronic infection by Toxocara canis increases the size of mammary tumors, affecting the systemic response to the parasite. However, the parasite does not invade the tumor, and we decided to study if the excretion/secretion of antigens from Toxocara canis (EST) can affect the progression of mammary tumors or the pathophysiology of cancer which is metastasis. Thus, this study aimed to determine whether excretion/secretion T. canis antigens, injected directly into the tumor, affect tumor growth and metastasis. Methods: We evaluated these parameters through the monitoring of the intra-tumoral immune response. Results: Mice injected intratumorally with EST did not show changes in the size and weight of the tumors; although the tumors showed an increased microvasculature, they did develop increased micro and macro-metastasis in the lung. The analysis of the immune tumor microenvironment revealed that EST antigens did not modulate the proportion of immune cells in the tumor, spleen, or peripheral lymph nodes. Macroscopic and microscopic analyses of the lungs showed increased metastasis in the EST-treated animals compared to controls, accompanied by an increase in VEGF systemic levels. Discussion: Thus, these findings showed that intra-tumoral injection of T. canis EST antigens promote lung metastasis through modulation of the tumor immune microenvironment.


Assuntos
Neoplasias da Mama , Parasitos , Toxocara canis , Toxocaríase , Humanos , Feminino , Animais , Camundongos , Antígenos de Helmintos , Injeções Intralesionais , Pulmão , Microambiente Tumoral
11.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578518

RESUMO

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/metabolismo
12.
Sci Rep ; 14(1): 8119, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582758

RESUMO

Breathing difficulties and exertional dyspnea are frequently reported in hypermobile Ehlers-Danlos syndrome (hEDS); however, they are not clearly explained. An impaired proprioception or the addition of a cognitive task could influence ventilatory control. How can the perception of lung volume be measured? Is lung volume perception impaired in hEDS patients? Is the breathing control impaired during a cognitive task in hEDS patients? A device was developed to assess the accuracy of lung volume perception in patients with hEDS and matched control subjects. In the second step, ventilation was recorded in both groups with and without a cognitive task. Two groups of 19 subjects were included. The accuracy of lung volume perception was significantly (P < 0.01) lower at 30% of inspired vital capacity in patients with hEDS in comparison to the control group, and they showed erratic ventilation (based on spatial and temporal criteria) when performing a cognitive task. These data support the influence of the proprioceptive deficit on ventilatory control in hEDS patients. These elements may help to understand the respiratory manifestations found in hEDS. Future research should focus on this relationship between lung volume perception and ventilation, and could contribute to our understanding of other pathologies or exercise physiology.Trial registration number: ClinicalTrials.gov, NCT05000151.


Assuntos
Síndrome de Ehlers-Danlos , Humanos , Síndrome de Ehlers-Danlos/patologia , Pulmão/patologia , Dispneia , Medidas de Volume Pulmonar , Percepção
13.
Sci Rep ; 14(1): 8080, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582767

RESUMO

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-ß1 (AdTGF-ß1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-ß1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-ß1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-ß1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-ß1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.


Assuntos
Atelectasia Pulmonar , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Respiração com Pressão Positiva/métodos , Pulmão , Alvéolos Pulmonares/fisiologia
15.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
16.
Front Immunol ; 15: 1348181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558813

RESUMO

Rationale: Circadian systems drive the expression of multiple genes in nearly all cells and coordinate cellular-, tissue-, and system-level processes that are critical to innate immunity regulation. Objective: We examined the effects of circadian rhythm disorganization, produced by light shift exposure, on innate immunity-mediated inflammatory lung responses including vascular permeability and gene expression in a C57BL/6J murine model of inflammatory lung injury. Methods: A total of 32 C57BL/6J mice were assigned to circadian phase shifting (CPS) with intratracheal phosphate-buffered saline (PBS), CPS with intratracheal lipopolysaccharide (LPS), control (normal lighting) condition with intratracheal PBS, and control condition with intratracheal LPS. Bronchoalveolar lavage (BAL) protein, cell counts, tissue immunostaining, and differentially expressed genes (DEGs) were measured in lung tissues at 2 and 10 weeks. Measurements and results: In mice exposed to both CPS and intratracheal LPS, both BAL protein and cell counts were increased at both 2 and 10 weeks compared to mice exposed to LPS alone. Multiple DEGs were identified in CPS-LPS-exposed lung tissues compared to LPS alone and were involved in transcriptional pathways associated with circadian rhythm disruption, regulation of lung permeability, inflammation with Rap1 signaling, and regulation of actin cytoskeleton. The most dysregulated pathways included myosin light chain kinase, MAP kinase, profilin 2, fibroblast growth factor receptor, integrin b4, and p21-activated kinase. Conclusion: Circadian rhythm disruption results in exacerbated immune response and dysregulated expression of cytoskeletal genes involved in the regulation of epithelial and vascular barrier integrity-the mechanistic underpinnings of acute lung injury. Further studies need to explore circadian disorganization as a druggable target.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Pulmão , Expressão Gênica
17.
Front Immunol ; 15: 1343364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558799

RESUMO

Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas , Vesículas Extracelulares , Humanos , Microglia/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Pulmão/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
18.
BMJ Case Rep ; 17(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575335

RESUMO

A term neonate presented with cyanosis from birth, with refractory hypoxaemia despite intubation, administration of 100% oxygen and inhaled nitric oxide. Structural congenital heart disease was excluded. He developed profuse pulmonary haemorrhage at 6 hours of life with worsening hypoxia and was transferred to a paediatric intensive care unit (PICU) for initiation of veno-venous extracorporeal membrane oxygenation (vvECMO). Endotracheal aspirates from both the birth hospital and the PICU were positive for Bacillus cereus, with all other investigations finding no alternative cause for his presentation. Of note, mother was a practising veterinarian raising another potential source of exposure to this pathogen. A full recovery occurred after a total of 5 days of vvECMO, 13 days of ventilation and 20 days of PICU stay.


Assuntos
Oxigenação por Membrana Extracorpórea , Pneumonia , Masculino , Recém-Nascido , Humanos , Criança , Bacillus cereus , Pulmão , Óxido Nítrico , Oxigênio
19.
Pharm Biol ; 62(1): 326-340, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584568

RESUMO

CONTEXT: Asthma presents a global health challenge. The main pharmacotherapy is synthetic chemicals and biological-based drugs that are costly, and have significant side effects. In contrast, use of natural products, such as onion (Allium cepa L., Amaryllidaceae) in the treatment of airway diseases has increased world-wide because of their perceived efficacy and little safety concerns. However, their pharmacological actions remain largely uncharacterized. OBJECTIVE: We investigated whether onion bulb extract (OBE) can (1) reverse established asthma phenotype (therapeutic treatment) and/or (2) prevent the development of the asthma phenotype, if given before the immunization process (preventative treatment). MATERIALS AND METHODS: Six groups of male Balb/c mice were established for the therapeutic (21 days) and five groups for the preventative (19 days) treatment protocols; including PBS and house dust mite (HDM)-challenged mice treated with vehicle or OBE (30, 60, and 100 mg/kg/i.p.). Airways inflammation was determined using cytology, histology, immunofluorescence, Western blot, and serum IgE. RESULTS: Therapeutic (60 mg/kg/i.p.) and preventative (100 mg/kg/i.p.) OBE treatment resulted in down-regulation of HDM-induced airway cellular influx, histopathological changes and the increase in expression of pro-inflammatory signaling pathway EGFR, ERK1/2, AKT, pro-inflammatory cytokines and serum IgE. DISCUSSION AND CONCLUSION: Our data show that OBE is an effective anti-inflammatory agent with both therapeutic and preventative anti-asthma effects. These findings imply that onion/OBE may be used as an adjunct therapeutic agent in established asthma and/or to prevent development of allergic asthma. However, further studies to identify the active constituents, and demonstrate proof-of-concept in humans are needed.


Assuntos
Asma , Cebolas , Humanos , Masculino , Animais , Camundongos , Modelos Animais de Doenças , Asma/tratamento farmacológico , Asma/prevenção & controle , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/metabolismo , Citocinas/metabolismo , Pyroglyphidae/metabolismo , Imunoglobulina E , Camundongos Endogâmicos BALB C , Pulmão
20.
Commun Biol ; 7(1): 427, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589700

RESUMO

Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.


Assuntos
Envelhecimento , Pulmão , Idoso , Humanos , Pulmão/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...